The Symbol of an Itô Process and its Relations to Fine Properties

> Alexander Schnurr TU Dortmund 18-06-2010

- DynStoch meeting 2010 -

Notation

- Vectors in \mathbb{R}^d are column vectors.
- \bullet x' denotes a transposed vector.
- ullet $B_b(\mathbb{R}^d)$ bounded Borel measurable functions
- ullet $\mathcal{C}_{\infty}(\mathbb{R}^d)$ continuous and vanishing at infinity
- $C_c^{\infty}(\mathbb{R}^d)$ test functions

A stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}^x)_{x \in \mathbb{R}^d}$ is always 'in the background'.

Outline

- On Itô Processes
- Introducing: The Symbol
- Applications of the Symbol
 - General Applications
 - Indices
 - Example: Lévy Driven SDE

Itô Processes

Definition

Itô processes are strong Markov processes, which are as well semimartingales with characteristics of the form

$$\begin{array}{rcl} B_t(\omega) & = & \int_0^t \ell(X_s(\omega)) \; ds & , \ell(\cdot) \in \mathbb{R}^d \\ C_t(\omega) & = & \int_0^t Q(X_s(\omega)) \; ds & , Q(\cdot) \; \text{pos. semidefinite} \\ \nu(\omega; dt, dy) & = & N(X_t(\omega), dy) \times dt & , N(\cdot, dy) \; \text{Lévy measure} \end{array}$$

with respect to a fixed truncation function χ for every \mathbb{P}^{x} $(x \in \mathbb{R}^{d})$. We restrict ourselves to ℓ , Q, $\int (1 \wedge y^{2}) N(\cdot, dy)$ which are (finely) continuous and locally bounded.

The Symbol of a Process

Definition

Let $X=(X_t)_{t\geq 0}$ be an \mathbb{R}^d -valued normal, Markov semimartingale, which is conservative. For $x,\xi\in\mathbb{R}^d$ we define

$$p(x,\xi) := -\lim_{t\downarrow 0} \mathbb{E}^x \frac{e^{i(X_t - x)'\xi} - 1}{t}$$

and call $p: \mathbb{R}^d imes \mathbb{R}^d \longrightarrow \mathbb{C}$ the **symbol** of the process, if the limit exists.

The Symbol of a Process

Definition

Let $X=(X_t)_{t\geq 0}$ be an \mathbb{R}^d -valued normal, Markov semimartingale, which is conservative. For $x,\xi\in\mathbb{R}^d$ we define

$$p^{\sigma}(x,\xi) := -\lim_{t\downarrow 0} \mathbb{E}^{x} \frac{e^{i(X_{t}^{\sigma}-x)'\xi}-1}{t}$$

and call $p^{\sigma}: \mathbb{R}^d imes \mathbb{R}^d \longrightarrow \mathbb{C}$ the **symbol** of the process, if the limit exists.

where σ is the first exit time of an arbitrary compact set containing x.

The Symbol of a Lévy Process

Let $X = (X_t)_{t \ge 0}$ be a Lévy process:

$$-\lim_{t\downarrow 0} \mathbb{E}^{x} \frac{e^{i(X_{t}-x)'\xi}-1}{t} = -\lim_{t\downarrow 0} \frac{\mathbb{E}^{x} (e^{i(X_{t}-x)'\xi})-1}{t}$$

$$= -\lim_{t\downarrow 0} \frac{\mathbb{E}^{0} (e^{iX'_{t}\xi})-1}{t}$$

$$= -\lim_{t\downarrow 0} \frac{e^{-t\psi(\xi)}-1}{t}$$

$$= -\frac{\partial^{+}}{\partial t}\Big|_{t=0} (e^{-t\psi(\xi)})$$

$$= \psi(\xi)$$

The Symbol of a Feller Process

In the case of Feller processes we have

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} p(x,\xi) \widehat{u}(\xi) d\xi$$

if it is bounded in the sense

$$q(x,\xi) \le c \cdot (1 + \|\xi\|^2)$$
 $\forall x \in \mathbb{R}^d$. (G)

The Symbol of a Feller Process

In the case of Feller processes we have

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} p^{\sigma}(x,\xi) \widehat{u}(\xi) d\xi$$

if it is bounded in the sense

$$-q(x,\xi) \le \epsilon \cdot (1 + \|\xi\|^2) \qquad \forall x \in \mathbb{R}^d. \tag{G}$$

The Symbol of an Itô Process

In the case of Itô processes the symbol $p^\sigma:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{C}$ is given by

$$p^{\sigma}(x,\xi) = -\ell(x)'\xi + \frac{1}{2}\xi'Q(x)\xi - \int_{y\neq 0} \left(e^{iy'\xi} - 1 - iy'\xi \cdot \chi(y)\right) N(x,dy)$$

where (ℓ, Q, N) are the (finely continuous) differential characteristics of the process.

The Symbol of an Itô Process

In the case of Itô processes the symbol $p^\sigma:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{C}$ is given by

$$p^{\sigma}(x,\xi) = -\ell(x)'\xi + \frac{1}{2}\xi'Q(x)\xi - \int_{y\neq 0} \left(e^{iy'\xi} - 1 - iy'\xi \cdot \chi(y)\right) \ N(x,dy)$$

where (ℓ,Q,N) are the (finely continuous) differential characteristics of the process.

$$\begin{array}{rcl} B_t(\omega) & = & \int_0^t \ell(X_s(\omega)) \; ds & , \ell(\cdot) \in \mathbb{R}^d \\ C_t(\omega) & = & \int_0^t Q(X_s(\omega)) \; ds & , Q(\cdot) \; \text{pos. semidefinite} \\ \nu(\omega; \, dt, \, dy) & = & N(X_t(\omega), \, dy) \times dt & , N(\cdot, \, dy) \; \text{Lévy measure} \end{array}$$

	Lévy	Feller	ltô
characteristic exponent	$\psi(\xi)$		
symbol (generator)	$\psi(\xi)$	$q(x,\xi)$	
probabilistic symbol	$\psi(\xi)$	$q(x,\xi)$	$p(x,\xi)$

	Lévy	Feller	ltô
characteristic exponent	$\psi(\xi)$		
symbol (generator)	$\psi(\xi)$	$q(x,\xi)$	
probabilistic symbol	$\psi(\xi)$	$q(x,\xi)$	$p(x,\xi)$

$$\mathbb{E}^{0}\left(e^{i\xi'X_{t}}\right)=e^{-t\cdot\psi(\xi)}$$

	Lévy	Feller	ltô
characteristic exponent	$\psi(\xi)$		
symbol (generator)	$\psi(\xi)$	$q(x,\xi)$	
probabilistic symbol	$\psi(\xi)$	$q(x,\xi)$	$p(x,\xi)$

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} q(x,\xi) \widehat{u}(\xi) d\xi$$

	Lévy	Feller	ltô
characteristic exponent	$\psi(\xi)$		
symbol (generator)	$\psi(\xi)$	$q(x,\xi)$	
probabilistic symbol	$\psi(\xi)$	$q(x,\xi)$	$p(x,\xi)$

$$-\lim_{t\downarrow 0}\mathbb{E}^{x}\frac{e^{i(X_{t}^{\sigma}-x)'\xi}-1}{t}$$

Having calculated the symbol it is possible to obtain both: the generator of the process and the semimartingale characteristics. In the case of rich Feller processes satisfying the growth condition (G) in x it is known that properties of the process can be expressed via analytic properties of the symbol, e.g.

Having calculated the symbol it is possible to obtain both: the generator of the process and the semimartingale characteristics. In the case of rich Feller processes satisfying the growth condition (G) in x it is known that properties of the process can be expressed via analytic properties of the symbol, e.g.

conservativeness

Having calculated the symbol it is possible to obtain both: the generator of the process and the semimartingale characteristics. In the case of rich Feller processes satisfying the growth condition (G) in x it is known that properties of the process can be expressed via analytic properties of the symbol, e.g.

- conservativeness
- \bullet γ -variation

Having calculated the symbol it is possible to obtain both: the generator of the process and the semimartingale characteristics. In the case of rich Feller processes satisfying the growth condition (G) in x it is known that properties of the process can be expressed via analytic properties of the symbol, e.g.

- conservativeness
- \bullet γ -variation
- growth and Hölder conditions

Having calculated the symbol it is possible to obtain both: the generator of the process and the semimartingale characteristics. In the case of rich Feller processes satisfying the growth condition (G) in x it is known that properties of the process can be expressed via analytic properties of the symbol, e.g.

- conservativeness
- \bullet γ -variation
- growth and Hölder conditions
- smoothness of the paths.

Out of the representation (for $ho \in \mathbb{R}^d ackslash \{0\}$)

$$\frac{\left\|y\right\|^2}{1+\left\|y\right\|^2} = \int_{\rho \neq 0} \left(1 - \cos(y'\rho)\right) g(\rho) \ d\rho$$

Out of the representation (for $ho \in \mathbb{R}^d ackslash \{0\}$)

$$\frac{\|y\|^2}{1+\|y\|^2} = \int_{\rho \neq 0} \left(1 - \cos(y'\rho)\right) g(\rho) \ d\rho$$

we use the function

$$g(\rho) = \frac{1}{2} \int_0^\infty (2\pi y)^{-d/2} e^{-\|\rho\|^2/(2y)} e^{-y/2} dy$$

Out of the representation (for $ho \in \mathbb{R}^d ackslash \{0\}$)

$$\frac{\|y\|^2}{1+\|y\|^2} = \int_{\rho \neq 0} \left(1 - \cos(y'\rho)\right) g(\rho) \ d\rho$$

we use the function

$$g(\rho) = \frac{1}{2} \int_0^\infty (2\pi y)^{-d/2} e^{-\|\rho\|^2/(2y)} e^{-y/2} dy$$

and define (for R > 0)

$$H(x,R) := \sup_{\|y-x\| \le 2R} \sup_{\|\varepsilon\| \le 1} \left(\int_{-\infty}^{\infty} \operatorname{Re} p\left(y, \frac{\rho\varepsilon}{R}\right) g(\rho) \ d\rho + \left| p\left(y, \frac{\varepsilon}{R}\right) \right| \right)$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 9 C C

Out of the representation (for $ho \in \mathbb{R}^d ackslash \{0\}$)

$$\frac{\|y\|^2}{1+\|y\|^2} = \int_{\rho \neq 0} \left(1 - \cos(y'\rho)\right) g(\rho) \ d\rho$$

we use the function

$$g(\rho) = \frac{1}{2} \int_0^\infty (2\pi y)^{-d/2} e^{-\|\rho\|^2/(2y)} e^{-y/2} dy$$

and define (for R > 0)

$$H(x,R) := \sup_{\|y-x\| \le 2R} \sup_{\|\varepsilon\| \le 1} \left(\int_{-\infty}^{\infty} \operatorname{Re} p\left(y, \frac{\rho\varepsilon}{R}\right) g(\rho) \ d\rho + \left| p\left(y, \frac{\varepsilon}{R}\right) \right| \right)$$

and furthermore

$$eta_{\infty}^{x} := \inf \left\{ \lambda > 0 : \limsup_{R o 0} R^{\lambda} H(x,R) = 0
ight\}.$$

4□ > 4□ > 4 = > 4 = > = 99

A Characterization of the Index β_{∞}^{x}

Theorem

For every $x \in \mathbb{R}^d$ such that $\xi \longmapsto p(x,\xi)$ is not identically zero, the index β_{∞}^x can be calculated in the following way

$$\beta_{\infty}^{\mathbf{X}} = \limsup_{\|\eta\| \to \infty} \sup_{\|y - x\| \leq 2/\|\eta\|} \frac{\log |p(y, \eta)|}{\log \|\eta\|}.$$

The Symbol of the Solution of an SDE

Starting point

Let Z be a n-dim. Lévy process and consider the following SDE:

$$dX_t = \Phi(X_{t-}) dZ_t$$

$$X_0 = x \tag{*}$$

where

- $\Phi : \mathbb{R}^d \longrightarrow \mathbb{R}^{d \times n}$ is Lipschitz continuous,
- $Z = (Z_t)_{t \geq 0}$ takes its values in \mathbb{R}^n ,
- The solution $X=(X_t)_{t\geq 0}$ is \mathbb{R}^d -valued.

The Symbol of the Solution of an SDE

Starting point

Let Z be a n-dim. Lévy process and consider the following SDE:

$$dX_t = \Phi(X_{t-}) dZ_t$$

$$X_0 = x \tag{*}$$

where

- $\Phi : \mathbb{R}^d \longrightarrow \mathbb{R}^{d \times n}$ is Lipschitz continuous,
- $Z = (Z_t)_{t>0}$ takes its values in \mathbb{R}^n ,
- The solution $X=(X_t)_{t\geq 0}$ is \mathbb{R}^d -valued.

Remark: This SDE has a unique solution. If Φ is bounded, the solution is a Feller process.

Consider (one dimensional):

$$\begin{split} &e^{i(X_t^{\sigma}-x)\xi}-1 &\stackrel{\text{[It\delta]}}{=} \\ &\int_{0+}^t \left(i\xi \cdot e^{i(X_{s-}^{\sigma}-x)\xi}\right) \, dX_s^{\sigma} + \frac{1}{2} \int_{0+}^t \left(-\xi^2 e^{i(X_{s-}^{\sigma}-x)\xi}\right) \, d[X_s^{\sigma},X_s^{\sigma}]^c \\ &+ e^{-ix\xi} \sum_{0 < s < t} \left(e^{iX_s^{\sigma}\xi} - e^{iX_{s-}^{\sigma}\xi} - i\xi e^{iX_{s-}^{\sigma}\xi} \Delta X_s^{\sigma}\right) \end{split}$$

Calculating the Symbol

Consider (one dimensional):

$$\begin{split} &\frac{1}{t}\mathbb{E}^{\mathsf{x}}\left(e^{i(X_{t}^{\sigma}-\mathsf{x})\xi}-1\right) \stackrel{[\mathsf{lt}\delta]}{=} \\ &\frac{1}{t}\mathbb{E}^{\mathsf{x}}\left(\int_{0+}^{t}\left(i\xi\cdot e^{i(X_{s-}^{\sigma}-\mathsf{x})\xi}\right)\,dX_{s}^{\sigma}+\frac{1}{2}\int_{0+}^{t}\left(-\xi^{2}e^{i(X_{s-}^{\sigma}-\mathsf{x})\xi}\right)\,d[X_{s}^{\sigma},X_{s}^{\sigma}]^{c} \\ &+e^{-i\mathsf{x}\xi}\sum_{0< s< t}\left(e^{iX_{s}^{\sigma}\xi}-e^{iX_{s-}^{\sigma}\xi}-i\xi e^{iX_{s-}^{\sigma}\xi}\Delta X_{s}^{\sigma}\right)\right) \end{split}$$

We obtain in the case of the solution of an SDE driven by a Lévy process:

$$p^{\sigma}(x,\xi) = -i\ell'(\Phi(x)'\xi) + \frac{1}{2}(\Phi(x)'\xi)'Q(\Phi(x)'\xi)$$
$$-\int_{y\neq 0} \left(e^{i(\Phi(x)'\xi)'y} - 1 - i(\Phi(x)'\xi)'y \cdot \chi(y)\right) N(dy)$$

where ψ is the symbol of the driving term and Φ is the coefficient of the SDE.

The Result

We obtain in the case of the solution of an SDE driven by a Lévy process:

$$p^{\sigma}(x,\xi) = -i\ell'(\Phi(x)'\xi) + \frac{1}{2}(\Phi(x)'\xi)'Q(\Phi(x)'\xi)$$
$$-\int_{y\neq 0} \left(e^{i(\Phi(x)'\xi)'y} - 1 - i(\Phi(x)'\xi)'y \cdot \chi(y)\right) N(dy)$$
$$= \psi(\Phi(x)'\xi)$$

where ψ is the symbol of the driving term and Φ is the coefficient of the SDE.

An Existence Result

Corollary

For a given function $p(x,\xi)$ which can be written as

$$p(x,\xi) = \psi(\Phi(x)'\xi)$$

where ψ is continuous negative definite and Φ is Lipschitz continuous, there exists a corresponding Itô process, which is Feller if Φ is bounded.

Technical Main Result

Theorem

Let X be a solution process of the SDE

$$dX_{t} = \Phi(X_{t-}) dZ_{t}$$

$$X_{0} = x \qquad (*$$

with d=n and where the linear mapping $\xi\mapsto\Phi(y)'\xi$ is bijective for every $y\in\mathbb{R}^d$. If the driving Lévy process has the non-constant symbol ψ and index β^ψ_∞ , then the solution X of the SDE has, for every $x\in\mathbb{R}^d$, the index $\beta^x_\infty\equiv\beta^\psi_\infty$.

→□▷ →□▷ → □▷ → □▷ → □○○

A Result on the Strong γ -Variation of the Process

For $\gamma \in \]0,\infty[$ and a \mathbb{R}^d -valued function g on the interval [a,b] we call

$$V^{\gamma}(g;[a,b]) := \sup_{\pi_n} \sum_{j=1}^n \|g(t_j) - g(t_{j-1})\|^{\gamma}$$

the (strong) γ -variation of g on [a,b]. The supremum is taken over all partitions $\pi_n = (a = t_0 < t_1 < ... < t_n = b)$.

4□ > 4□ > 4 = > 4 = > = 90

A Result on the Strong γ -Variation of the Process

Corollary 1

Let $X = (X_t)_{t \ge 0}$ be the solution of the SDE (\star) Under the assumptions of the theorem above for every $\gamma > \beta_{\infty}^{\psi}$ the γ -variation of the process X is on every compact time interval [0, T] a.s. finite.

A Result on Hölder Conditions

Corollary 2

Let $X=(X_t)_{t\geq 0}$ be the solution of the SDE (\star) . Then

$$\lim_{t\to 0}\,t^{-1/\lambda}(X_\cdot-x)_t^*=0\ \text{a.s.}\ \text{if}\ \lambda>\sup_{x}\beta_\infty^x$$

Under the assumptions of the theorem above, $\sup_x \beta_{\infty}^x$ is the index of the driving Lévy process: β_{∞}^{ψ} .

A Result on Besov Spaces

Corollary 3

Let $X=(X_t)_{t\geq 0}$ be the solution of the SDE (\star) . Under the assumptions of the theorem above we have almost surely

$$\{t\mapsto X_t\}\in B_q^{s, ext{loc}}(L^p(dt)) \quad ext{if} \quad s\cdot \sup_y \{p,q,eta_\infty^y\} < 1$$

and

$$\{t\mapsto X_t\}
ot\in B_q^{s,\text{loc}}(L^p(dt)) \quad \text{if} \quad sp>1.$$

(ロ) (型) (主) (主) 主 り()

Open Questions:

Open Questions:

• Which properties of the process can still be expressed in terms of the symbol, if the process is not Fellerian?

Open Questions:

- Which properties of the process can still be expressed in terms of the symbol, if the process is not Fellerian?
- Which other assumptions can be dropped?

Open Questions:

- Which properties of the process can still be expressed in terms of the symbol, if the process is not Fellerian?
- Which other assumptions can be dropped?
- Statistics for the symbol.

Bibliography

- Cinlar, E., Jacod, J., Protter, P., Sharpe, M.: Semimartingales and Markov Processes. In: Z. Wahrscheinlichkeitstheorie verw. Gebiete 54 (1980), 161-219.
- Jacob, N.: Characteristic functions and symbols in the theory of Feller processes. In: Potential Analysis 8 (1998), 61-68
- Jacob, N., Schilling, R. L.: Lévy-Type Processes and Pseudodifferential Operators, Barndorff-Nielsen, O. E., et al. (eds.) Levy processes: Theory and Applications, Birkhäuser, Boston, 139-168, 2001.
- Schilling, R. L.: Conservativeness and Extensions of Feller Semigroups, Positivity 2 (1998), 239-256.
- Schilling, R. L.: Growth and Hölder conditions for sample Paths of Feller processes, Probab. Theory Relat. Fields 112 (1998), 565-611.
- Schilling R. L., Schnurr, A.: The Symbol Associated With the Solution of a Stochastic Differential Equation, submitted.

Thank you for your attention!

Definition

A Feller process is an \mathbb{R}^d -valued Markov process $X=(X_t)_{t\geq 0}$ with associated semigroup $(T_t)_{t\geq 0}$ having the following properties:

- (F1) $T_t: C_\infty(\mathbb{R}^d) \longrightarrow C_\infty(\mathbb{R}^d)$ for every $t \geq 0$
- (F2) $\lim_{t\downarrow 0} \|T_t u u\|_{\infty} = 0$ for every $u \in C_{\infty}(\mathbb{R}^d)$

The Generator of a Lévy Process

A Lévy process is strongly Markovian and homogeneous in time (and space). Therefore the

$$T_t u(x) = \mathbb{E}^x(u(X_t)), \qquad u \in C_\infty(\mathbb{R}^d), \ t \ge 0, \ x \in \mathbb{R}^d$$

form a semigroup $(T_t)_{t>0}$ of operators on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

If $(X_t)_{t>0}$ is a Lévy process

then the generator A can be written

in the following form (for $u \in C_c^{\infty}(\mathbb{R}^d)$)

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} \psi(\xi) \quad \widehat{u}(\xi) \ d\xi$$

A Lévy process is strongly Markovian and homogeneous in time (and space). Therefore the

$$T_t u(x) = \mathbb{E}^x(u(X_t)), \qquad u \in C_\infty(\mathbb{R}^d), \ t \ge 0, \ x \in \mathbb{R}^d$$

form a semigroup $(T_t)_{t>0}$ of operators on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

If $(X_t)_{t>0}$ is a Lévy process

then the generator A can be written

in the following form (for $u \in C_c^{\infty}(\mathbb{R}^d)$)

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} \psi(\xi) \quad \widehat{u}(\xi) \ d\xi$$

A Feller process is strongly Markovian and homogeneous in time (and space). Therefore the

$$T_t u(x) = \mathbb{E}^x(u(X_t)), \qquad u \in C_\infty(\mathbb{R}^d), \ t \ge 0, \ x \in \mathbb{R}^d$$

form a semigroup $(T_t)_{t\geq 0}$ of operators on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

If $(X_t)_{t\geq 0}$ is a Lévy process

then the generator A can be written

in the following form (for $u \in C_c^{\infty}(\mathbb{R}^d)$)

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} \psi(\xi) \quad \widehat{u}(\xi) \ d\xi$$

A Feller process is strongly Markovian and homogeneous in time (and space). Therefore the

$$T_t u(x) = \mathbb{E}^x(u(X_t)), \qquad u \in C_\infty(\mathbb{R}^d), \ t \ge 0, \ x \in \mathbb{R}^d$$

form a semigroup $(T_t)_{t\geq 0}$ of operators on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

If $(X_t)_{t\geq 0}$ is a Lévy process

then the generator A can be written

in the following form (for $u \in \mathcal{C}^\infty_c(\mathbb{R}^d)$)

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} \psi(\xi) \quad \widehat{u}(\xi) \ d\xi$$

A Feller process is strongly Markovian and homogeneous in time (and space). Therefore the

$$T_t u(x) = \mathbb{E}^x(u(X_t)), \qquad u \in C_\infty(\mathbb{R}^d), \ t \ge 0, \ x \in \mathbb{R}^d$$

form a semigroup $(T_t)_{t\geq 0}$ of operators on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

If $(X_t)_{t\geq 0}$ is a Feller process

then the generator A can be written

in the following form (for $u \in C_c^\infty(\mathbb{R}^d)$)

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} \psi(\xi) \quad \widehat{u}(\xi) \ d\xi$$

A Feller process is strongly Markovian and homogeneous in time (and space). Therefore the

$$T_t u(x) = \mathbb{E}^x(u(X_t)), \qquad u \in C_\infty(\mathbb{R}^d), \ t \ge 0, \ x \in \mathbb{R}^d$$

form a semigroup $(T_t)_{t\geq 0}$ of operators on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

If $(X_t)_{t\geq 0}$ is a Feller process and the test functions $C_c^{\infty}(\mathbb{R}^d)$ are contained in the domain D(A) of the generator then the generator A can be written in the following form (for $u\in C_c^{\infty}(\mathbb{R}^d)$)

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} \psi(\xi) \quad \widehat{u}(\xi) \ d\xi$$

A Feller process is strongly Markovian and homogeneous in time ($and\ space$). Therefore the

$$T_t u(x) = \mathbb{E}^x(u(X_t)), \qquad u \in C_\infty(\mathbb{R}^d), \ t \ge 0, \ x \in \mathbb{R}^d$$

form a semigroup $(T_t)_{t\geq 0}$ of operators on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

If $(X_t)_{t\geq 0}$ is a Feller process and the test functions $C_c^{\infty}(\mathbb{R}^d)$ are contained in the domain D(A) of the generator then the generator A can be written in the following form (for $u\in C_c^{\infty}(\mathbb{R}^d)$)

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} q(x,\xi)\widehat{u}(\xi) d\xi$$

where $q(x,\xi)$ is for every x a continuous negative definite function in the co-variable ξ .

If $(X_t)_{t\geq 0}$ is a Feller process then the generator A has a representation as follows

$$Au(x) = -\int_{\mathbb{R}^d} e^{ix'\xi} q(x,\xi) \widehat{u}(\xi) d\xi,$$

where the **symbol** $q: \mathbb{R}^d imes \mathbb{R}^d \longrightarrow \mathbb{C}$ can be written as

$$q(x,\xi) = -i\ell(x)'\xi + \frac{1}{2}\xi'Q(x)\xi - \int_{y\neq 0} \left(e^{iy'\xi} - 1 - iy'\xi \cdot \chi(y)\right) N(x,dy)$$

with (for every $x \in \mathbb{R}^d$)

- $\ell(x) \in \mathbb{R}^d$,
- Q(x) is a positive semidefinite $d \times d$ -matrix,
- $N(x,\cdot)$ is a measure on $\mathbb{R}^d\setminus\{0\}$ such that $\int (1\wedge y^2) \ N(x,dy) < \infty$,
- $\chi: \mathbb{R}^d \longrightarrow \mathbb{R}$ is a cut-off function.