
The Symbol of an Itô
Process and its Relations

to Fine Properties

Alexander Schnurr
TU Dortmund
18-06-2010

- DynStoch meeting 2010 -



s Notation

Vectors in Rd are column vectors.

x ′ denotes a transposed vector.

Bb(Rd ) bounded Borel measurable functions

C∞(Rd ) continuous and vanishing at in�nity

C∞c (Rd ) test functions

A stochastic basis (Ω,F , (Ft)t≥0,Px)x∈Rd is always `in the background'.
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On Itô Processes

s Itô Processes

De�nition

Itô processes are strong Markov processes, which are as well

semimartingales with characteristics of the form

Bt(ω) =

∫ t

0
`(Xs(ω)) ds , `(·) ∈ Rd

Ct(ω) =

∫ t

0
Q(Xs(ω)) ds ,Q(·) pos. semide�nite

ν(ω; dt, dy) = N(Xt(ω), dy)× dt ,N(·, dy) Lévy measure

with respect to a �xed truncation function χ for every Px (x ∈ Rd ). We

restrict ourselves to `,Q,
∫

(1 ∧ y2)N(·, dy) which are (�nely) continuous

and locally bounded.
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On Itô Processes

s Overview

Lévy ⊂ (rich)

Feller
⊂ Itô ⊂ Hunt

semimartingale
⊂ Markov

semimartingale

∩ ∩ ∩
Feller ⊂ Hunt ⊂ Markov
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Introducing: The Symbol

s The Symbol of a Process

De�nition

Let X = (Xt)t≥0 be an Rd -valued normal, Markov semimartingale, which is

conservative. For x , ξ ∈ Rd we de�ne

p

pσ

(x , ξ) := − lim
t↓0

Ex e
i(X

σ

t −x)′ξ − 1

t

and call p

pσ

: Rd × Rd −→ C the symbol of the process, if the limit exists.

where σ is the �rst exit time of an arbitrary compact set containing x .
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Introducing: The Symbol

s The Symbol of a Lévy Process

Let X = (Xt)t≥0 be a Lévy process:

− lim
t↓0

Ex e
i(Xt−x)′ξ − 1

t
= − lim

t↓0

Ex(e i(Xt−x)′ξ)− 1

t

= − lim
t↓0

E0(e iX
′
t ξ)− 1

t

= − lim
t↓0

e−tψ(ξ) − 1

t

= −∂
+

∂t

∣∣∣∣
t=0

(
e−tψ(ξ)

)
= ψ(ξ)
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Introducing: The Symbol

s The Symbol of a Feller Process

In the case of Feller processes we have

Au(x) = −
∫
Rd

e ix
′ξp(x , ξ)û(ξ) dξ

if it is bounded in the sense

q(x , ξ) ≤ c · (1 + ‖ξ‖2) ∀x ∈ Rd . (G )
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In the case of Feller processes we have
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∫
Rd
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Introducing: The Symbol

s The Symbol of an Itô Process

In the case of Itô processes the symbol pσ : Rd × Rd → C is given by

pσ(x , ξ) = −`(x)′ξ +
1

2
ξ′Q(x)ξ −

∫
y 6=0

(
e iy
′ξ − 1− iy ′ξ · χ(y)

)
N(x , dy)

where (`,Q,N) are the (�nely continuous) di�erential characteristics of the

process.
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Introducing: The Symbol

s Overview

characteristic exponent Lévy Feller Itô

characteristic exponent ψ(ξ)

symbol (generator) ψ(ξ) q(x , ξ)

probabilistic symbol ψ(ξ) q(x , ξ) p(x , ξ)

E0
(
e iξ
′Xt

)
= e−t·ψ(ξ)Au(x) = −

∫
Rd

e ix
′ξq(x , ξ)û(ξ) dξ− lim

t↓0
Ex e

i(Xσ
t −x)′ξ − 1

t
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Applications of the Symbol General Applications

s Applications of the Symbol

Having calculated the symbol it is possible to obtain both: the generator of

the process and the semimartingale characteristics. In the case of rich Feller

processes satisfying the growth condition (G ) in x it is known that

properties of the process can be expressed via analytic properties of the

symbol, e.g.

conservativeness

γ-variation

growth and Hölder conditions

smoothness of the paths.
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Applications of the Symbol Indices

s Indices of Symbols
Out of the representation (for ρ ∈ Rd\{0})

‖y‖2

1 + ‖y‖2
=

∫
ρ6=0

(
1− cos(y ′ρ)

)
g(ρ) dρ

we use the function

g(ρ) =
1

2

∫ ∞
0

(2πy)−d/2e−‖ρ‖
2/(2y)e−y/2 dy

and de�ne (for R > 0)

H(x ,R) := sup
‖y−x‖≤2R

sup
‖ε‖≤1

(∫ ∞
−∞

Re p
(
y ,
ρε

R

)
g(ρ) dρ+

∣∣∣p (y , ε
R

)∣∣∣)
and furthermore

βx
∞ := inf

{
λ > 0 : lim sup

R→0
RλH(x ,R) = 0

}
.
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Applications of the Symbol Indices

s A Characterization of the Index βx

∞

Theorem

For every x ∈ Rd such that ξ 7−→ p(x , ξ) is not identically zero, the index

βx
∞ can be calculated in the following way

βx
∞ = lim sup

‖η‖→∞
sup

‖y−x‖≤2/‖η‖

log |p(y , η)|
log ‖η‖

.
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Applications of the Symbol Example: Lévy Driven SDE

s The Symbol of the Solution of an SDE

Starting point

Let Z be a n-dim. Lévy process and consider the following SDE:

dXt = Φ(Xt−) dZt

X0 = x
(?)

where

Φ : Rd −→ Rd×n is Lipschitz continuous,

Z = (Zt)t≥0 takes its values in Rn,

The solution X = (Xt)t≥0 is Rd -valued.

Remark: This SDE has a unique solution. If Φ is bounded, the solution is a

Feller process.
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Applications of the Symbol Example: Lévy Driven SDE

s Calculating the Symbol

Consider (one dimensional):

1

t
Ex
(

e i(X
σ
t −x)ξ − 1

)

[Itô]
=

1

t
Ex
(

∫ t

0+

(
iξ · e i(Xσ

s−−x)ξ
)
dX σ

s +
1

2

∫ t

0+

(
− ξ2e i(Xσ

s−−x)ξ
)
d [X σ

s ,X
σ
s ]c

+ e−ixξ
∑

0<s≤t

(
e iX

σ
s ξ − e iX

σ
s−ξ − iξe iX

σ
s−ξ∆X σ

s

)

)
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Applications of the Symbol Example: Lévy Driven SDE

s The Result

We obtain in the case of the solution of an SDE driven by a Lévy process:

pσ(x , ξ) = −i`′(Φ(x)′ξ) +
1

2
(Φ(x)′ξ)′Q(Φ(x)′ξ)

−
∫
y 6=0

(
e i(Φ(x)′ξ)′y − 1− i(Φ(x)′ξ)′y · χ(y)

)
N(dy)

= ψ(Φ(x)′ξ)

where ψ is the symbol of the driving term and Φ is the coe�cient of the

SDE.
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Applications of the Symbol Example: Lévy Driven SDE

s An Existence Result

Corollary

For a given function p(x , ξ) which can be written as

p(x , ξ) = ψ(Φ(x)′ξ)

where ψ is continuous negative de�nite and Φ is Lipschitz continuous,

there exists a corresponding Itô process, which is Feller if Φ is bounded.
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Applications of the Symbol Example: Lévy Driven SDE

s Technical Main Result

Theorem

Let X be a solution process of the SDE

dXt = Φ(Xt−) dZt

X0 = x
(?)

with d = n and where the linear mapping ξ 7→ Φ(y)′ξ is bijective for every

y ∈ Rd . If the driving Lévy process has the non-constant symbol ψ and

index βψ∞, then the solution X of the SDE has, for every x ∈ Rd , the index

βx
∞ ≡ β

ψ
∞.
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Applications of the Symbol Example: Lévy Driven SDE

s A Result on the Strong γ-Variation of the Process

For γ ∈ ]0,∞[ and a Rd -valued function g on the interval [a, b] we call

V γ(g ; [a, b]) := sup
πn

n∑
j=1

‖g(tj)− g(tj−1)‖γ

the (strong) γ-variation of g on [a, b]. The supremum is taken over all

partitions πn = (a = t0 < t1 < ... < tn = b).
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Applications of the Symbol Example: Lévy Driven SDE

s A Result on the Strong γ-Variation of the Process

Corollary 1

Let X = (Xt)t≥0 be the solution of the SDE (?) Under the assumptions of

the theorem above for every γ > βψ∞ the γ-variation of the process X is on

every compact time interval [0,T ] a.s. �nite.
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Applications of the Symbol Example: Lévy Driven SDE

s A Result on Hölder Conditions

Corollary 2

Let X = (Xt)t≥0 be the solution of the SDE (?). Then

lim
t→0

t−1/λ(X· − x)∗t = 0 a.s. if λ > sup
x
βx
∞

Under the assumptions of the theorem above, supx β
x
∞ is the index of the

driving Lévy process: βψ∞.
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Applications of the Symbol Example: Lévy Driven SDE

s A Result on Besov Spaces

Corollary 3

Let X = (Xt)t≥0 be the solution of the SDE (?). Under the assumptions of

the theorem above we have almost surely

{t 7→ Xt} ∈ Bs,loc
q (Lp(dt)) if s · sup

y
{p, q, βy

∞} < 1

and

{t 7→ Xt} 6∈ Bs,loc
q (Lp(dt)) if sp > 1.
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Applications of the Symbol Example: Lévy Driven SDE

s Further Research

Open Questions:

Which properties of the process can still be expressed in terms of the

symbol, if the process is not Fellerian?

Which other assumptions can be dropped?

Statistics for the symbol.
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Applications of the Symbol Example: Lévy Driven SDE
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Applications of the Symbol Example: Lévy Driven SDE

Thank you for your attention!
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Applications of the Symbol Example: Lévy Driven SDE

s Feller Processes

De�nition

A Feller process is an Rd -valued Markov process X = (Xt)t≥0 with

associated semigroup (Tt)t≥0 having the following properties:

(F1) Tt : C∞(Rd ) −→ C∞(Rd ) for every t ≥ 0

(F2) limt↓0 ‖Ttu − u‖∞ = 0 for every u ∈ C∞(Rd )
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Applications of the Symbol Example: Lévy Driven SDE

s The Generator of a Lévy

Feller

Process

A Lévy

Feller

process is strongly Markovian and homogeneous in time

(and space)

����

. Therefore the

Ttu(x) = Ex(u(Xt)), u ∈ C∞(Rd ), t ≥ 0, x ∈ Rd

form a semigroup (Tt)t≥0 of operators on C∞(Rd ).

If (Xt)t≥0 is a Lévy

Feller

process

and the test functions C∞c (Rd ) are contained

in the domain D(A) of the generator

then the generator A can be written

in the following form (for u ∈ C∞c (Rd ))

Au(x) = −
∫
Rd

e ix
′ξψ(ξ)

q(x , ξ)

û(ξ) dξ

where q(x , ξ) is for every x a continuous negative de�nite function in the

co-variable ξ.
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Applications of the Symbol Example: Lévy Driven SDE

s The Generator of a Feller Process

If (Xt)t≥0 is a Feller process then the generator A has a representation as

follows

Au(x) = −
∫
Rd

e ix
′ξq(x , ξ)û(ξ) dξ,

where the symbol q : Rd × Rd −→ C can be written as

q(x , ξ) = −i`(x)′ξ +
1

2
ξ′Q(x)ξ −

∫
y 6=0

(
e iy
′ξ − 1− iy ′ξ · χ(y)

)
N(x , dy)

with (for every x ∈ Rd )

`(x) ∈ Rd ,

Q(x) is a positive semide�nite d × d -matrix,

N(x , ·) is a measure on Rd\{0} such that
∫

(1 ∧ y2) N(x , dy) <∞,

χ : Rd −→ R is a cut-o� function.
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